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On the basis of solution of the inverse problem of heat conduction by a method of quasi-inversion we devel-
oped an algorithm for recovery of the temperature of the surface of contact of a copper electrode with sin-
tered metal powder by results of temperature measurements at a certain depth in the electrode. Results of the
numerical experiment which indicate the efficiency of the algorithm are presented.

The process of electrical contact sintering of metal powders is used in repair production for renovation and
manufacture of parts of agricultural machines. For optimization of the regimes of the process of electrical contact sin-
tering of metal powders we require data on the nonstationary temperatures of surfaces of electrodes [1, 2]. At the same
time, it is known that measurement of the body surface temperature is accompanied by a considerable methodological
error. Therefore, thermometry data obtained at a certain depth are used instead of direct measurement of temperature
on the studied surface. Then these data are recalculated to the surface temperature by solving an inverse problem of
heat conduction. This is an ill-posed problem; therefore, in the present work, in order to solve the problem, we used
a regularizing algorithm based on the method of quasi-inversion [3, 4]. The inverse problem is formulated in the form
of the Cauchy problem. Results of the numerical solution of a model problem of monotonic heating of a copper elec-
trode are used as data of temperature measurements at different depths (Fig. 1).

The problem of recovery of the temperature of the copper electrode is formulated as follows. It is necessary
to find an expanded vector of temperatures and temperature gradients 
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To solve (1) we use a finite-difference method. In the initial region of variation of continuous arguments G =

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 we construct a rectangular grid Gh,τ = 
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Replacing the derivatives by finite-difference relations, we obtain the following system of computational equa-
tions:
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 ,   j = 1, 2, ..., M .

(2)

Using the maximum principle, we can show instability of the computational algorithm (2). To construct a stable algo-
rithm, we use the method of quasi-inversion:
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(3)

After substitution of partial derivatives by finite-difference relations we obtain the following computational relations
(the subscript α is omitted for the sake of simplicity):
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Peforming calculations by formulas (4) successively for each i, we find a regularized solution which depends
on the parameter α (α > 0).

In order to refine the numerical algorithm of solution of the problem posed, we conducted a numerical experi-
ment. The temperature and its gradient at a depth of 0.1 mm were taken as initial data for the calculations. Calcula-
tions inside the sample were performed by formulas (2) (without regularization) and by (4) using the method of

Fig. 1. Dependences of temperature (a) and heat-flux density (b) on time: 1)
on the surface of the electrode; 2) at a depth of 0.1 mm; 3) 0.2. T, K; qs,
W/m2; t, sec.
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quasi-inversion with regularization. The time step was taken equal to 0.01 sec, the step along the coordinate — 0.0001
m. The regularization parameter was chosen experimentally.

Results of the numerical experiment shown in Fig. 2c indicate that if the temperature measured at some dis-
tance from the surface has a random additive error, then direct recovery of the surface temperature is accompanied by
the appearance of a similar error in the temperature under recovery. Use of the regularization algorithm, which is con-
structed based on the method of quasi-inversion, for recovery of temperature leads to instability of the computational
process and accumulation of error on approaching the specimen surface. Oscillations in the solution can be suppressed
by correct (rational) choice of the regularization parameter α. In our case, the value of the regularization parameter
α = 10−7 is rational.

An analysis of the results obtained allows us to draw a conclusion on the stability of the algorithm suggested
and on the possibility of its use in solution of problems of recovery of the surface temperature of the copper electrode
by the data of temperature measurements at a certain depth.

Further, the algorithm developed was used to identify thermal processes on the surface of the steel part in its
recovery by electrical contact sintering of metal powders. It is shown in [5] that the data of the calculation are in good
agreement with actual values of temperature obtained on the surface of the part.

In conclusion, we note that improvement of the accuracy of identification of thermal processes on the surface
of the electrode and the part, which is reached by the algorithm suggested, allows one to improve the accuracy of pre-
diction of regimes in development of new technologies of electrical contact sintering.

NOTATION

x, coordinate, m; t, time, sec; T, temperature, K; q, temperature gradient, deg/sec; qs, heat-flux density,
W/m2; tf, time of occurrence of the studied process, sec; x1, specified depth, mm; a, thermal diffusivity, m/sec2; T0(t)
and q0(t), temperature and its gradient measured at a specified depth, K and deg/sec; Tα, temperature in regularized
solution, K; τ and h, steps of the computational grid along time and coordinate; α, regularization parameter; M, N,
numbers of division of the computational grid. Subscripts: f, finite; s, cross-section area; 0, initial value.
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Fig. 2. Surface temperature recovered from a depth of 0.1 mm without regu-
larization (a) and with regularization parameters α = 10−8 (b) and α = 10−7

(c): 1 and 2) initial and recovered surface temperatures; 3) noised temperature
at a depth of 0.1 mm. T, K; t, sec.
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